M. Math. II - Commutative Algebra Semestral Examination : 23.11.2022 Instructor : B Sury Maximum Marks 45; Each question carries 9 marks. Unless specified otherwise, all rings are commutative with $1 \neq 0$.

Q 1a.

Prove that a finitely generated, projective module over a local ring must be free.

 \mathbf{OR}

Q 1b.

If (A, \mathbf{m}) is a local ring, and if x_1, \dots, x_n are elements of \mathbf{m} whose images generate \mathbf{m}/\mathbf{m}^2 as a A/\mathbf{m} -vector space, show that \mathbf{m} is generated by x_1, \dots, x_n .

Q 2a.

Let A be a ring and M an A-module.

Assume the following criterion for flatness :

M is flat if the map $I \otimes_A M \to M$; $\sum a_i \otimes m_i \mapsto \sum a_i m_i$, is injective for every ideal I.

Deduce that when A is a PID, torsion-free A-modules are flat.

OR

Q 2b.

Let $\theta: M \to N$ be an A-module homomorphism. If N is finitely generated and $\theta_P: M_P \to N_P$ is onto, for a fixed prime ideal P, show that there exists $a \notin P$ such that the induced map : $M_a \to N_a$ is onto.

Q 3a.

Let A be a domain. Prove that it is integrally closed if and only if A[X]/(f) is a domain for each monic irreducible polynomial $f \in A[X]$.

OR

Q 3b.

For a field K, consider the ring $A = K[X, Y]/(X^3 - Y^2)$. Prove that A is a domain which is not integrally closed.

Q 4a.

If R is a finitely generated k-algebra for a field k, prove that Nil(R) = Jac(R).

OR

Q 4b.

Let $B \supset A$ be an integral extension and let $P \in Spec(A)$. If Q is an ideal of B which is maximal with respect to the property that $Q \cap A \subseteq P$, prove that Q is a prime ideal.

Q 5a.

•____

Let $A = \bigoplus_{n \ge 0} A_n$ be a graded ring generated by A_1 as an A_0 -algebra. If the ring A_0 is a Noetherian and A_1 is finitely generated as an A-module, show that A is Noetherian.

OR

Q 5b.

Using Artin-Rees lemma or otherwise, prove :

If A is a Noetherian ring, I is an ideal, $a \in A$ is not a zero divisor, then there exists $n_0 > 0$ so that for all $n \ge n_0$, the relation $ab \in I^n$ implies $b \in I^{n-n_0}$.